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Background

B US power generation capacity is increasing ~2.6%
annually (Worldwide ~ 3%)

B Much of this power is large turbines, but
reciprocating engines play an important role for
distributed resources

B Climate change has placed an emphasis on
efficiency (CO,), while air quality issues have placed
an emphasis on NO,

B Natural gas engines have potential to fulfill the
market requirements for low NOx and high efficiency




Background (2)

B Development efforts to improve the performance
and emission to unprecedented levels are on-
going

B Two notable U.S. efforts are

ARES - Advanced Reciprocating Engine Systems,
sponsored by the U.S. Department of Energy

ARICE - Advanced Reciprocating Internal Combustion
Engine, sponsored by the California Energy Commission




& Why reciprocating engines?
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ARES
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«#) Engines come in various sizes...




B Small Engine
B Light Duty




B Small Engine
B Light Duty
B Heavy Duty




B Small Engine
B Light Duty

B Heavy Duty
B Locomotive




B Small Engine
B Light Duty

B Heavy Duty
B Locomotive
B Stationary







150 kW Genset

B Engines of many
different sizes are
being adapted to
power generation
to fulfill the need
for distributed
power

H 8.1 liter
automotive
engine




2000 kW Genset
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Physical Size - 500 kW Generator
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Manufacturers of Large

Natural Gas Engines
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Aspects of Engine
Performance
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Engine Characteristics

B Number of Cylinders

B Bore (mm) (diameter of piston/cylinder)
B Speed (rpm)

B Power (MW)

B Power Density (kW/liter)

B BMEP (bar)




Number of Cylinders versus
Engine Bore Diameter
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Engine Power versus Engine
Bore Diameter
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Power Density versus
Engine Bore Diameter
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BMEP versus Engine Bore

Diameter
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Thermal Efficiency (%)

5
48

W W W W W A bbb D
o N A O OO O N &~ O
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Efficiency (NOx < 1.2 g/bhp-hr)
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NOx-BTE Levels
for 1-3 MW Engines
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Brief Historical Trend for
BMEP
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Brief Historical Trend for
Thermal Efficiency
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Future Trend for Thermal
Efficiency
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a Future Development Targets
for 1-3 MW Engines
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ARES Program

ARES is a multi-faceted R&D . - rechnoloay Lab

- - : ational Energy Technology Laboratory
program mvolvmg engine Southwest Research Institute
manufacturers, research Oak Ridge NL
laboratories, universities, and
national laboratories.

Argonne NL
Sandia NL
Los Alamos NL

Ohio State
Purdue
Colorado State
MIT
Michigan Tech
USC
U of Texas
West Virginia
Caterpillar U of Tennessee
Cummins
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ARES Program

ARES Focused research areas

Short term targets (‘05)
Efficiency ~ 46%
BSNOx ~ 0.15 g/kW-hr

Knock Modeling
Dilute Combustion
HCCI

Ultra Lean Combustion
Sensors and Controls

Emissions
Friction
Ignition

High BMEP
Engine
Development
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e Simplified Methane Combustion
Chemistry

Reactants Products
CH, + 20,—/8> CO, + 2H,0

+

N, —> NO,

Partial CO
Oxidation C H4




NOx, CO, and THC

Emission Levels and Air-Fuel Ratio
Operating Range for Gas Engine
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Lean Burn, combustion
diluted with excess air,
exhaust contains oxygen
making catalytic
aftertreatment of NOx
problematic

Stoichiometric combustion
Just enough air to
consume all of the fuel,
exhaust contains little
oxygen enabling catalytic
aftertreatment of NOx



Aftertreatment

B Lean NO, catalyst (LNC)
currently not a viable technology

B Selective catalytic reduction (SCR)

Viable for lean combustion, requires reductant (typically
urea) that adds to operating costs

Potential for ammonia slip, control issue
90-95% efficiency

B 3-way catalyst if no oxygen present in exhaust
stream
Proven in light duty, shorter life applications

Low capital cost relative to SCR
95-99% efficiency




a Future Development Targets
for 1-3 MW Engines
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Gas Engine vs. Turbine
Efficiency
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Upcoming Regulations

H “National Emissions Standards for
Hazardous Air Pollutants (HAPS) for
Stationary Reciprocating Internal
Combustion Engines (RICE)” (NESHAP)

B Purpose

Set regulatory standards for HAPs or Air Toxic
Emissions from RICE

HAPs of most concern
—formaldehyde, acrolein, methanol, acetaldehyde




B Emergency power/limited use
B Landfill gas or digester gas combusted as primary fuel
B Engines less than 500 brake horsepower

B Other
Four stroke lean burn (4SLB)
Four stroke rich burn (4SRB)
Compression Ignition (ClI)
Two stroke lean burn (2SLB)

Matural

Engine
Inventory




RICE - Applicability

B The rule will apply to each stationary RICE located
at a major source of HAP above 500HP

B Stationary RICE meeting any of the following
criteria have no requirements except for an initial
notification requirement:

Emergency power/limited use units

Units that combust digester or landfill gas as primary
fuel

B Existing 2SLB, existing 4SLB, and existing CI
have no requirements

B In summary, existing 4SRB and all new RICE have
regulatory requirements




Analysis

B Rule basically requires an oxidation
catalyst for new engines

B Most immediate impact in gas
transmission industry - largest single
concentration of RICE at major sources

B Many applications will not be greater
than 500 hp or will not be located at
major sources - so this rule will not

apply




RICE MACT Schedule

B Proposed in December 19, 2002
B Comments until February 20, 2003
B Promulgation in February 28, 2004

B Engines installed after proposal must
meet final rule




Summary

B Gas engine efficiency will continue to
improve even as emission levels
continue to decrease

B Concerted development efforts are
required for continuous improvement
to overcome technical barriers

B Advanced concepts will be required
to achieve and exceed the projected
development targets
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Thank you for your attention!
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